A Fast Boosting-based Learner for Feature-Rich Tagging and Chunking
نویسندگان
چکیده
Combination of features contributes to a significant improvement in accuracy on tasks such as part-of-speech (POS) tagging and text chunking, compared with using atomic features. However, selecting combination of features on learning with large-scale and feature-rich training data requires long training time. We propose a fast boosting-based algorithm for learning rules represented by combination of features. Our algorithm constructs a set of rules by repeating the process to select several rules from a small proportion of candidate rules. The candidate rules are generated from a subset of all the features with a technique similar to beam search. Then we propose POS tagging and text chunking based on our learning algorithm. Our tagger and chunker use candidate POS tags or chunk tags of each word collected from automatically tagged data. We evaluate our methods with English POS tagging and text chunking. The experimental results show that the training time of our algorithm are about 50 times faster than Support Vector Machines with polynomial kernel on the average while maintaining stateof-the-art accuracy and faster classification speed.
منابع مشابه
Fast Boosting-based Part-of-Speech Tagging and Text Chunking with Efficient Rule Representation for Sequential Labeling
This paper proposes two techniques for fast sequential labeling such as part-of-speech (POS) tagging and text chunking. The first technique is a boosting-based algorithm that learns rules represented by combination of features. To avoid time-consuming evaluation of combination, we divide features into not used ones and used ones for learning combination. The other is a rule representation. Usua...
متن کاملAnalyzing the Impact of Spelling Errors on POS-Tagging and Chunking in Learner English
Part-of-speech (POS) tagging and chunking have been used in tasks targeting learner English; however, to the best our knowledge, few studies have evaluated their performance and no studies have revealed the causes of POStagging/chunking errors in detail. Therefore, we investigate performance and analyze the causes of failure. We focus on spelling errors that occur frequently in learner English....
متن کاملA Hybrid Framework for Building an Efficient Incremental Intrusion Detection System
In this paper, a boosting-based incremental hybrid intrusion detection system is introduced. This system combines incremental misuse detection and incremental anomaly detection. We use boosting ensemble of weak classifiers to implement misuse intrusion detection system. It can identify new classes types of intrusions that do not exist in the training dataset for incremental misuse detection. As...
متن کاملA Feature-Rich Vietnamese Named-Entity Recognition Model
In this paper, we present a feature-based named-entity recognition (NER) model that achieves the start-of-the-art accuracy for Vietnamese language. We combine word, word-shape features, PoS, chunk, Brown-cluster-based features, and word-embedding-based features in the Conditional Random Fields (CRF) model. We also explore the effects of word segmentation, PoS tagging, and chunking results of ma...
متن کاملروشی جدید جهت استخراج موجودیتهای اسمی در عربی کلاسیک
In Natural Language Processing (NLP) studies, developing resources and tools makes a contribution to extension and effectiveness of researches in each language. In recent years, Arabic Named Entity Recognition (ANER) has been considered by NLP researchers due to a significant impact on improving other NLP tasks such as Machine translation, Information retrieval, question answering, query result...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2008